M1.A

M2.C

M3.C

M4. (a) $4 \mathrm{LiH}+\mathrm{AlCl}_{3} \rightarrow \mathrm{LiAlH}_{4}+3 \mathrm{LiCl}$
(b) $\mathrm{H}^{-}=1 \mathrm{~s}^{2}$ or $1 \mathrm{~s}_{2}$
(c) Tetrahedral or diagram (Not distorted tetrahedral)
(Equal) repulsion
between four bonding pairs / bonds
(Not repulsion between H atoms loses M2 and M3)
(Not 'separate as far as possible')
('4' may be inferred from a correct diagram)
(d) Dative (covalent) or coordinate

Lone pair or non-bonding pair of electron or both e^{-}

QoL Donated from H^{-}to Al or shared between H and Al (tied to M2)
(Not 'from H atom') (Not 'to Al ion') (Not 'e-s transferred')

Page 2

M5.C

M6. (a) (i) 3 (bonding) pairs of electrons (1)
allow 3 bonds
repel equally (1) (or as much as possible)
Or get as far apart as possible
(ii) Predicted bond angle: 118 (allow 117-119 ${ }^{\circ}$ (1)

Explanation: Ione pair (1) repels more than bonding pair (1)

Allow EXP if $\angle<118^{\circ}$
but C.E. $=0$ if $\angle \geq 120^{\circ}$
(b) Name of shape: Tetrahedral (1) Example: CH4 etc (1)

Allow correct ion
(c) (i) $90^{\circ}(1)$
(ii) lone pairs (or they) repel more than bonding pairs (or most) (1) (so are) as far apart as possible (1)

Mark independently
(iii) square planar (1)
allow square

M7. (a) (i) Electronegativity (difference) or suitable description (1)
Accept F and Cl are highly electronegative
Not both atoms are highly electronegative
(ii) $\mathrm{HF}=$ hydrogen bonding (1)
$\mathrm{HCl}=$ (permanent) dipole-dipole bonding or even van de Waals' (1)
Hydrogen bonding stronger / is the strongest IMF (1)
Accept a statement that HF must have the stronger IMF, even if no IMFs identified
The explanation must be based on intermolecular forces/attractions
Note: if the explanation is clearly intramolecular $=C E$
(b) Electron pair or lone pair donated (1)

Do not accept 'donation of electrons'
From chloride ion to Al or AlCl_{3} (1)
M1 can be earned by a general explanation of coordinate bonding, even if the electron pair is said to come from AI. The second mark, M2, is for this specific bond Ignore missing charge
(c)
PCl_{5}

(1)
PCl_{4}^{+}

(1)
PCl_{5} shown as trigonal bipyramid [Look for: ONE solid linear CI-P-Cl bond] Bond Angle(s) 90° and 120° (1)
$\mathrm{PCl}_{4}{ }^{+}$shown as tetrahedral NO solid linear CI-P-CI bonds] Bond angle(s) 109 or 109.5° (1)

M8. (a) (i) Covalent (1)
(ii) Co-ordinate (1) (or dative)
(iii) Both / two / pair electrons come from nitrogen (1)
(iv) 4 bonding / electron pairs (1)
repel equally (1)
$O R$ are identical
as far apart as possible (1)
OR to position of minimum repulsion
tetrahedron (1)
(b) Power (or ability) of an element / atom to attract electron pair/electrons/ an electron/electron density (1)

Page 5

Allow attract from, withdraw in, do not allow remove from, withdraw from.
(c) (i) Electron deficient (1)

Or small, slight, partial positive charge
(ii) $\mathrm{H}<\mathrm{N}(1)$

M9. (a) SF_{6} shown as octahedral / square based bipyramid (1)
Bond angle: 90° or 180° and 90° (1)
Shape = octahedral (1)
If lone pair shown then C.E. $=0 / 4$

Wrong symbols - no diagram mark
Equal repulsion between $\underline{6}$ bonding or shared electron pairs QoL (1)
AlCl_{4}^{-}- shape shown as tetrahedral (1)
Bond angle $=109^{\circ}$ to 109.5° (1)
Shape = tetrahedral (1)
If lone pair shown then C.E = 0/4

(Equal repulsion between) 4 bonding pairs or shared electron pairs (1)
QoL may be awarded here also
Mark all points independently
(b) Solvent has low bp or weak intermolecular forces or evaporates quickly (1)
(Solvent) needs energy to evaporate (to overcome intermolecular forces) or valid reference to latent heat of vaporisation (or evaporation is endothermic) (1)

OR higher energy or faster molecules more likely to escape so mean energy (and hence temperature) falls

Energy taken from the skin (and so it cools) (1)
Fragrance or perfume (molecules) slowly spreads (through the room) (1)
By random movement or diffusion (of the perfume / fragrance) (1)

